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Abstract

Purpose

To evaluate the corneal epitheliotropic abilities of two commercialized human platelet

lysates (HPLs) and to compare the results with other blood derivatives, including human

peripheral serum (HPS) and bovine fetal serum (FBS).

Methods

In vitro, human corneal epithelial cells were incubated in various concentrations (0%, 3%,

5% and 10%) of blood derivatives. Two commercialized HPLs, including UltraGRO TM

(Helios, Atlanta, GA) and PLTMax (Mill Creek, Rochester, MI), were tested and compared

with HPS and FBS. Scratch-induced directional wounding assay was performed to evaluate

cellular migration. MTS assay was used to evaluate cellular proliferation. Cellular differentia-

tion was examined by scanning electron microscopy, inverted microscopy and transepithe-

lial electrical resistance. Sprague-Dawley rats were used to evaluate the effects of the blood

derivatives on corneal epithelial wound healing in vivo. Different blood derivatives were

applied topically every 2 hours for 2 days after corneal epithelial debridement. The concen-

trations of epidermal growth factor (EGF), transforming growth factor -β1 (TGF-β1), fibro-

nectin, platelet-derived growth factor-AB (PDGF-AB), PDGF-BB, and hyaluronic acid in

different blood derivatives were evaluated by enzyme-linked immunosorbent assay

(ELISA).

Results

In vitro experiments demonstrated statistically comparable epitheliotropic characteristics in

cellular proliferation, migration, and differentiation for the two commercialized HPLs com-

pared to FBS and HPS. Cells cultured without any serum were used as control group. The

epitheliotropic capacities were statistically higher in the two commercialized HPLs
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compared to the control group (p<0.05). Among the different concentrations of blood deriva-

tives, the preparations with 3% yielded better outcomes compared to 5% and 10%. In rats,

HPLs also caused improved but not statistically significant wound healing compared to

HPS. All the blood derivatives had better wound healing ratios than the control group

(p<0.05). In the quantification of epitheliotropic factors, UltraGRO and PLTMax had signifi-

cantly higher levels of EGF, TGF- β1, fibronectin than human peripheral serum (p<0.05).

Conclusions

Both commercialized HPLs showed comparable corneal epitheliotropic abilities and wound

healing rates compared to HPS and FBS in the in vivo and in vitro studies. Our results sug-

gest that HPLs may have the potential to replace HPS in the treatment of corneal epithelial

problems.

Introduction

Human peripheral serum (HPS) has long been used as a topical treatment for ocular surface

disorders such as recurrent corneal erosions, persistent epithelial defects, superior limbic kera-

toconjunctivitis, and dry eye syndrome. [1–13] However, HPS has several major disadvan-

tages. The process of obtaining peripheral blood from the patients and processing this to

serum eye drops may be inconvenient for clinical application. The quality of HPS may be

inconsistent, especially in patients with poor health, and the epitheliotropic abilities may be

unsatisfactory or unpredictable. No standardized dilution protocol has been reported. HPS

contains proinflammatory agents such as matrix metalloproteinase (MMP) and acid hydrolase

that are derived from leukocyte degranulation and may induce unwanted side effects. [14, 15]

In addition, HPS can be inconvenient for the patient due to its need to be stored at -4˚C and

be used preferably within a week. [16]

Human platelet lysate (HPL) is known to contain a number of mitogenic growth factors,

including platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal

growth factor (EGF) and transforming growth factor (TGF) [17–19]. It is obtained from cen-

trifugation and subsequent isolation of the platelet fraction from the platelet rich plasma

(PRP). In order to induce platelet activation, the conversion of fibrinogen to fibrin clot, and

growth factor release during the manufacturing process, platelet lysis is induced via either

freeze-thaw cycles or the addition of CaCl2 [20] or thrombin[21–23]. Recently, it has been

demonstrated that HPL can replace fetal bovine serum (FBS) and be used in mesenchymal

stem cell (MSC) culture without adversely affecting the immunophenotype or MSC metabo-

lism. [23–28] Since pharmaceutical grade HPLs are manufactured primarily from blood bank

sources under strict Good Manufacturing Practices (GMP), the possibility of allogenic blood-

derived infections is practically nonexistent. HPL can potentially replace HPS in treating ocu-

lar surface disorders, and be used as a substitute for FBS in MSC culture.

In this study, we hypothesized that HPL may provide comparable corneal epitheliotropic

properties compared to HPS or FBS. We evaluated the rates of corneal epithelial proliferation,

migration and differentiation in vitro with a human corneal epithelial cell line. The corneal

epithelial wound healing abilities in an animal model were examined. We also compared the

levels of several important corneal epitheliotropic factors in FBS, HPS, and HPL.

The corneal epitheliotrophic capacity of human platelet lysate
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Materials and methods

Reagents and antibiotics

Dulbecco’s modified Eagle’s medium (DMEM), F12, Trypsin-EDTA, phosphate-buffered

saline (PBS), FBS, and amphotericin B were purchased from Gibco (Rockville, MD). Dispase

II was purchased from Roche Diagnostics Corporation (Indianapolis, IN). Enzyme-linked

immunosorbent assay (ELISA) kit for TGF-β1 was purchased from RayBiotech, Inc. (Nor-

cross, GA). ELISA kit for human EGF was obtained from eBioscience (San Diego, CA). Hyal-

uronic acid (HA) concentrations and PDGF-AB were measured using ELISA kits from R&D

Systems (Minneapolis, MN). ELISA kit for fibronectin was purchased from Assaypro (Mis-

souri, USA). ELISA kit for PDGF-BB was obtained from Peprotech (New Jersey, USA). All

other reagents and chemicals were from Sigma-Aldrich (St. Louis, MO).

Preparations of blood derivatives

Preparation of FBS. FBS was purchased from Gibco (Rockville, MD) and stored in sterile

tubes at -20˚C before use. It was diluted to 3, 5, and 10% in DMEM for in vitro cell culture

experiments, and 3, 5, and 10% with Refresh Tear (Allergan, Inc. Parsippany, NJ) for topical

use in animal experiments.

Preparation of HPS. The procedure used to obtain HPS was approved by the Institutional

Review Board for Human Studies at the National Taiwan University Hospital

(201510123RINB). All participants provided their written informed consent to participate in

this study and the consent procedure was approved by the ethics committee. All individuals

were healthy volunteers who were not taking any medication. Samples of 20 ml whole blood

were drawn from 10 healthy volunteers (mean age, 30.3 ± 10.2 years) by venipuncture, allowed

to clot at room temperature (20–25˚C) for 4 hours, and centrifuged at 3000g for 15 minutes.

The serum was then heated for 30 minutes at 56˚C to eliminate further complement activation,

carefully filtered and aliquoted in a sterile manner. The serum was stored in sterile tubes at

-20˚C before use. HPS was diluted to 3%, 5%, and 10% using similar methods as the FBS.

Preparation of HPL. Two commercialized HPLs, including UltraGRO TM (Helios,

Atlanta, GA) and PLTMax (Mill Creek, Rochester, MI), were stored in sterile tubes at -20˚C

before use. The methods of HPL dilution to 3%, 5%, and 10% were similar to those of FBS.

Culture of human corneal epithelial cell line (HCEC)

Human corneal epithelial cell line was purchased from ATCC (CRL-11515). The cells were

centrifuged and then suspended in DMEM-F12 medium supplemented with antibiotic-anti-

mycotic (100μg/ml penicillin/streptomycin and 1.25μg/ml amphotericin B) agents. Different

percentages (3%, 5%, and 10%) of blood derivatives (HPS, HPLs, FBS) were added to the cul-

ture medium. The culture medium was replaced every 2 to 3 days. The cells were sub-cultured

after reaching confluence. We used only cells from passages 2–3 of the initial culture. Cells cul-

tured without any serum were used as control group.

Cell-migration: Scratch-induced directional wounding assay

HCECs were plated in 12-well tissue culture dishes at a concentration of 4 x 105 cells/ml and

maintained in media with different concentrations (3%, 5%, and 10%) of different blood deriv-

atives (HPLs, HPS, and FBS). After the cells reached confluence, a 200μl tip of the micropipette

was used to wound the cells and create a linear scrape about 1 mm wide. Wound closure was

recorded by photography at 0, 8, 12, and 16 hours after injury using an inverted microscope

equipped with a digital camera (Diagnostic Instruments, Inc., Sterling Heights, MI). The

The corneal epitheliotrophic capacity of human platelet lysate
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wound closure was quantified with an image processing and analysis software program (Image

J 1.37v; Wayne Rasband at the Research Services Branch, National Institute of Mental Health,

Bethesda, MD) by measuring the average residual gaps between migrating cells of opposing

wound edges. Wound healing ratio was defined as the difference between the initial and cur-

rent cell-free areas divided by the initial cell-free area. All experiments were repeated six times

to ensure consistent results.

Cell proliferation: MTS assay

HCECs (5 x 103/well) were loaded in 96-well plates and maintained in different concentrations

(3%, 5%, and 10%) of blood derivatives (HPLs, HPS, FBS) for 3 days. After incubating for 24,

48, and 72 hours, the numbers of viable cells were determined with MTS assay (Promega

corp., Madison, WI). According to the manufacturer’s instructions, the assay system measures

the reduction of a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophe-

nyl)-2H-tetrazolium inner salt (MTS) into a soluble formazan product by the mitochondria of

viable cells. Since the production of formazan is proportional to the number of living cells, the

intensity of the produced color is a good indicator of the cellular proliferative ability. Absor-

bances at 490 nm (test wavelength) and 650nm (reference wavelength) were measured using

an ELISA microplate reader (Model ELx 800; Bio-TEK instruments. Inc., Winooski, VT).

Wells containing culture medium but no cells served as controls. All experiments were

repeated six times to ensure consistent results. [29]

Cell differentiation-morphology: Inverted microscope and scanning

electron microscopy (SEM)

4 x 105 cells were seeded on 24-well plastic cell culture dishes with cover glasses and incubated

for 3 days after confluency in media with different concentrations (3%, 5%, and 10%) of blood

derivatives (HPLs, HPS, and FBS). After washing with PBS, specimens were fixed in 2.5% glu-

taraldehyde solution in 0.1M cacodylate buffer (pH 7.4) for 120 minutes, then post-fixed in 1%

osmium tetroxide for 60 minutes and progressively dehydrated through ascending alcohol

concentrations, critical point dried, mounted, and sputter coated with gold before examining

with SEM (JSM6510LV; JEOL, Ltd, Tokyo, Japan). The surface morphology of the cells was

evaluated by 2 independent examiners. All experiments were repeated 6 times.

Cell differentiation-function: Measurement of transepithelial electrical

resistance (TEER)

A total of 1 × 105 cells incubated in 3% of different blood derivatives (HPLs, HPS, and FBS)

were seeded in the upper chamber of a Costar transwell (Corning Costar, Cambridge, MA)

(1.12 cm2 diameter, 0.4μm pore size) and allowed to reach confluency. TEER was measured

using a Millicell-ERS electrical resistance system (Millipore, Bedford, MA) after the cells reach

80% confluency (day 0) and 3 days later (day 3) when the cells were at full confluency. The

TEER values were calculated as Ω cm2 by multiplying it with the surface area (1.12cm2) of the

monolayer. The resistance of the supporting membrane in the transwell filter is substracted

from all readings before calculations. All experiments were repeated 6 times to ensure consis-

tent results [29].

Rat model of corneal epithelial wound healing

All animals in this study were handled according to the guidelines in the ARVO Statement for

the Use of Animal in Ophthalmic and Vision Research. The protocol was approved by the

The corneal epitheliotrophic capacity of human platelet lysate
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Animal Care and Use Committee of National Taiwan University. All male Sprague-Dawley

rats, 16–24 weeks, were purchased from Charles River Laboratories, Canada (n = 24). These

animals were anesthetized with intraperitoneal injections of ketamine hydrochloride (2 mg/g

body weight) and xylazine (0.4 mg/g body weight). The animals were monitored every 2 hour.

After applying topical proparacaine (Alcaine; Alcon Laboratories, Inc., Fort Worth, TX) to

each eye, the central cornea was marked by a trephine (4mm in diameter), and the epithelium

was debrided by a corneal rust ring remover with a 0.5mm-burr (Algerbrush IITM; Alger

Equipment Co., Inc., Lago Vista, TX) under the operating microscope (OPMI Pico I; Carl

Zeiss Meditec, Jena, Germany). Blood derivatives (20% HPS, HPLs, FBS) were applied topi-

cally every 2 hours for 2 days. Rats treated with eye drops without blood derivatives were used

as the control group. The area of corneal epithelial defect was checked at 0, 12, 24, and 48

hours with fluorescein staining and photographed under the operating microscope. Wound

healing ratio was defined as the difference between the initial and current epithelial defect

sizes divided by the initial epithelial defect area.

No animal died, appeared ill or suffered greatly prior to the experimental endpoints,

although we had in place a protocol for early humane endpoints in cases where animals

appeared irritable or in severe pain. Animals were maintained on a 12:12-hr light/dark cycle,

and food and water were available ad libitum for the duration of experimentation.

Quantification of epitheliotrophic factors

Quantification of epitheliotrophic factors was modified from the previously published method

and performed in 3 different human blood derivatives[29] (2 HPLs and HPS). EGF, TGF-β1,

fibronectin, PDGF-AB, PDGF-BB, and HA were measured by ELISA according to the manu-

facturer’s instructions.

Chemical analysis

Contents of protein, glucose, chloride, sodium, potassium, calcium, phosphate, magnesium,

iron, the total iron capacity, ferritin, vitamin B12, and folate in human peripheral serum and

two commercialized human platelet lysates were determined using a Roche Module P800

Automatic Biochemical Analyzer (Roche Diagnstics, Mannheim, Germany).

Data evaluation and statistical methods

ANOVA, the Dunnett’s multiple comparison test and the Student’s t-test were performed for

statistical analysis. P value < 0.05 was considered statistically significant.

Results

Cell migration: Scratch-induced directional wounding assay

Fig 1 demonstrates the wound healing ratios at 16 hours. The healing ratios in 3% blood deriv-

atives were 0.665±0.226, 0.791±0.195, 0.942±0.032, and 0.856±0.106 in FBS, HPS, UltraGRO,

and PLTMax, respectively. The ratios at 16 hours in 5% blood derivatives were 0.745±0.197,

0.840±0.194, 0.868±0.122, and 0.827±0.203 in FBS, HPS, UltraGRO and PLTMax, respectively.

In 3% and 5% blood derivative preparations, no significant differences were noted between

HPS and the 2 commercialized HPLs. For the 10% blood derivatives, the wound healing ratios

at 16 hours were 0.602±0.096, 0.612±0.336, 0.491±0.229, and 0.460±0.224 in FBS, HPS, Ultra-

GRO, and PLTMax, respectively. A higher concentration (10%) appeared to retard wound

healing for all 4 blood products. The inhibitory effect was more obvious in HPLs compared to

that of HPS.

The corneal epitheliotrophic capacity of human platelet lysate
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Cell proliferation: MTS assay

Fig 2. demonstrates the results of the MTS assay. Similar to the cellular migration assay, there

were no significant differences between HPS and the 2 HPLs in 3%, 5% and 10% preparations

at all 3 time points. However, FBS seemed to have more cell proliferative ability compared to

HPS and the 2 HPLs. In addition, higher concentration (10%) of HPS and the 2 HPLs showed

more inhibitory effects on cell proliferation compared to that of FBS.

Fig 1. Cell migration: Scratch-induced directional wounding assay at 16 hours after wounding. (A) 10%

preparations of blood derivatives demonstrated poorer response compared to 3% and 5% preparations. There

was no significant difference among the 4 blood derivatives in 3% and 5% preparations. * indicated p <0.05.

** indicated p <0.01 compared to the control group that was without blood derivatives in culture media. (B)

Representative picture of the effects of different blood derivatives on epithelial scratch wound healing at 16

hours after wounding. FBS: fetal bovine serum, HPS: human peripheral serum. UltraGRO: Human platelet

lysate from Helios pharmaceutical. PLTMax: Human platelet lysate from Mill Creek pharmaceutical.

doi:10.1371/journal.pone.0171008.g001

The corneal epitheliotrophic capacity of human platelet lysate
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Cell differentiation: Inverted microscopy, scanning electron microscopy

(SEM) and transepithelial electric resistance (TEER)

After incubating HCECs with 3% of various blood preparations for 3 days, cellular differentia-

tion patterns were evaluated by inverted microscopy, SEM (Fig 3) and TEER (Fig 4). Under

the inverted microscope, cells incubated without serum (Fig 3A) showed a coherent mono-

layer of irregularly shaped cells that were significantly different from normal cultivated epithe-

lial cell morphology. In contrast, cells incubated with HPS and HPLs showed a coherent

monolayer of cells with the regular polygonal morphology quite similar to that of normal culti-

vated epithelial cells (Fig 3B–3D). Under SEM, cells cultivated without serum showed

increased cell-to-cell junctions without the formation of prominent microvilli on the cellular

surface. Partial exfoliation of the cell borders from the culture dish was suspected (Fig 3A).

Cells cultivated in HPS and the 2 HPLs demonstrated tight cell-to-cell junctions with promi-

nent upright microvilli homogenously and densely distributed at the cellular surface (Fig 3B–

3D). TEER is a functional differentiation assay which can reflect the epithelial tightness and

functional integrity. In our study, cells cultivated in 3% of blood derivatives showed no signifi-

cant difference in TEER values among HPS and the 2 HPLs on day 0 and day 3 of initial mea-

surements. [30] (Fig 4)

Fig 2. Cell proliferation: The effects of different blood derivatives on cellular proliferation with MTS

assay. At 24 hours and 48 hours, corneal epithelial cells incubated with fetal bovine serum had significantly

higher proliferative responses than those incubated in human peripheral serum, UltraGRO human platelet lysate

(HPL), and PLTMax HPL. At 72 hours, there was no difference among these 4 products in 3% and 5%

preparations. At 24, 48, and 72 hours, the proliferative responses showed no statistical difference between 3%

and 5% blood derivative preparations. However, 10% preparation demonstrated poorer proliferative response

compared to 3% and 5% preparations at all time points. FBS: fetal bovine serum, HPS: human peripheral

serum. UltraGRO: Human platelet lysate from Helios pharmaceutical. PLTMax: Human platelet lysate from Mill

Creek pharmaceutical. * indicated p <0.05. ** indicated p <0.01 compared to the control group that was without

blood derivative in culture media.

doi:10.1371/journal.pone.0171008.g002

The corneal epitheliotrophic capacity of human platelet lysate
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Rat model of corneal epithelial wound healing

Fig 5 demonstrated the in vivo rat corneal epithelial wound healing after epithelial debride-

ment and topical treatment with 20% of HPS and the 2 HPLs. The wound healing ratios at 24

hours were 0.639±0.095, 0.740±0.069, 0.778±0.096, 0.794±0.110, and 0.786±0.043 in control,

FBS, HPS, UltraGRO, and PLTMax, respectively. There were significant increases in corneal

epithelial wound healing in both the HPS and the 2 HPL groups compared to the control

group 24 hours after injury (p<0.05).

Quantification of epitheliotropic factors and chemical analysis

Quantification of epitheliotropic factors was performed in HPS and the 2 HPLs. Table 1 illus-

trates the ELISA assay results of EGF, TGF-β1, PDGF-AB, PDGF-BB, HA, and fibronectin.

The concentrations of EGF, TGF-β1, PDGF-AB, PDGF-BB, and HA were higher in the HPL

groups compared to those in HPS, but fibronectin was significantly lower in the HPL groups.

Chemical analysis (Table 2) revealed different concentrations of chemicals among the different

groups, with significantly more glucose and significantly less ferritin in the PLTmax compared

to HPS.(p<0.05)

Discussion

In this study, we demonstrated two different commercialized HPLs with corneal epitheliotro-

pic capacities not inferior to that of HPS both in vivo and in vitro. Commercialized HPLs had

significantly higher concentrations of several important growth factors, such as EGF, TGF-β1,

PDGF-AB and PDGF-BB, compared to HPS. As far as we know, this is the first study to evalu-

ate commercialized HPLs and to compare their corneal epitheliotropic properties with those

of other blood derivatives. We believed these two HPLs have the potential to be used as topical

eye drops for facilitating corneal re-epithelialization and to replace blood derivatives like HPS.

Fig 3. Cell differentiation: Inverted microscopy and scanning electron microscopy. Morphologies of

human corneal epithelial cell (HCEC) lines cultivated for 48 hours with different blood derivatives, including (A)

no serum, (B) human peripheral serum (HPS), (C) UltraGRO human platelet lysate (HPL), and (D) PLTMax

HPL. Under inverted microscopy, cells incubated without serum formed a coherent monolayer of irregularly

shaped cells (A) while cells cultivated in HPS, UltraGro, and PLTMax showed regular, polygonal flat cells

(B-D). Under SEM, cells cultivated without serum showed increased cell-to-cell junctions without the

formation of microvilli on the cell surface (A). The white arrow indicated the cell-to-cell junction and the white

arrow heads represented the microvilli on the cell surface. Exfoliation of the cells from the culture dish was

suspected in cells cultivated without blood derivatives. B-D) Cells cultivated in HPS, UltraGro, and PLTMax

demonstrated tight cell-to-cell junction with upright microvilli homogenously and densely distributed at the

cellular surface. Original magnifications of the inverted microscopy: 100X and SEM 1250X. UltraGRO:

Human platelet lysate from Helios pharmaceutical. PLTMax: Human platelet lysate from Mill Creek

pharmaecutical.

doi:10.1371/journal.pone.0171008.g003
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Corneal wound healing is a complex process, which involves cellular migration, prolifera-

tion, differentiation, and deposition of extracellular substances.[29] In this study, we investi-

gated the corneal epithelial migration, proliferation, and differentiation in 4 different blood-

derived preparations, including two commercialized HPLs (UltraGRO and PLTMax), HPS,

and FBS, in an in vitro cell culture model and in an in vivo rat corneal epithelial wound healing

model. FBS, a well-known and widely used calf derived blood product, was used as control in

our study. During the process of corneal epithelial wound healing, the initial migration of epi-

thelial cells that cover the denuded area occurs before cellular proliferation and differentiation

[31]. Scratch-induced directional wounding assay was designed to detect the effects of blood

derivatives on cellular migration in vitro. HPS and the 2 HPLs had better capabilities to pro-

mote cellular migration than FBS (in 3% and 5% preparation), and the 2 HPLs were not infe-

rior to HPS. Interestingly, a higher concentration (10%) produced significantly poorer cellular

Fig 4. Cell differentiation: Measurement of trans-epithelial electrical resistance (TEER). The effects of different

blood derivatives on trans-epithelial electrical resistance. Cells incubated with fetal bovine serum (FBS), human peripheral

serum (HPS), UltraGRO human platelet lysate (HPL), and PLTMax HPL demonstrated significantly higher TEER values

compared to the control group. However, there was no significant differences among FBS, HPS, UltraGRO, and PLTMax

on day 3 after the cells reached confluency. UltraGRO: Human platelet lysate from Helios pharmaceutical. PLTMax:

Human platelet lysate from Mill Creek pharmaceutical. * indicated p <0.01. ** indicated p <0.01 compared to the control

group that was without any blood derivative.

doi:10.1371/journal.pone.0171008.g004

The corneal epitheliotrophic capacity of human platelet lysate

PLOS ONE | DOI:10.1371/journal.pone.0171008 February 2, 2017 9 / 16



migration in all blood preparations compared to lower concentrations, especially in the 2 com-

mercialized HPLs. These results seemed to imply that lower concentrations (3% and 5%) of

HPLs promote better corneal epithelial cell migration, while higher concentrations may

worsen cellular migration as shown in vitro. (Fig 1) This finding is of interest for clinical appli-

cation since it may decrease the demands for a higher concentration of HPL supplies. We also

performed the MTS assay to evaluate the cellular proliferating ability among different blood

derivatives and found that the result was similar to that of the scratch-induced directional

wound healing assay. There was no significant difference in cellular proliferating abilities

between HPS and the 2 HPLs. Higher concentration (10%) once again resulted in poorer cellu-

lar proliferation. The reason why higher concentrations of HPS and HPLs cause poorer cor-

neal epithelial cell migration and proliferation may be due to TGF-β, an anti-proliferative

Fig 5. Rat model of corneal epithelial wound healing. (A) In vivo rat corneal epithelial wound healing after

epithelial debridement and topical treatment with 20% of human peripheral serum (HPS) and the 2 different

human platelet lysates (HPLs). There were significantly better wound healing abilities in HPS and the 2 HPL

groups compared to the control group at 24 hours after wounding. (B) Representative pictures of corneal

epithelial defects at 12, 24 and 48 hours after surgery in rat eyes that received epithelial debridement and

different treatments. UltraGRO: Human platelet lysate from Helios pharmaceutical. PLTMax: Human platelet

lysate from Mill Creek pharmaceutical. * indicated p<0.05 which was compared to the control group without

any blood derivative.

doi:10.1371/journal.pone.0171008.g005

Table 1. Concentrations of epitheliotropic factors in different human blood preparations (n = 3).

Blood Preparations HPS UltraGRO PLTMax

EGF (ng/ml) 0.67±0.01*§ 5.89±0.09*† 7.53±0.42§†

TGF- β1 (ng/ml) 57.79±0.85*§ 98.35±0.26*† 107.07±0.09§†

Fibronectin (μg/ml) 566.54±63.31*§ 76.60±20.03* 147.06±3.71§

PDGF-AB (ng/ml) 0.80±0.05*§ 1.47±0.01* 1.72±0.01§

PDGF-BB (ng/ml) 0.87±0.38§ 3.53±2.83 10.54±0.68§

Hyaluronic Acid(ng/ml) 32.23±0.22§ 42.04±3.33† 66.29±4.11§†

*Significant difference between HPS and UltraGRO(p<0.05)
§ Significant difference between HPS and PLTMax (p<0.05)
†Significant difference between UltraGRO and PLTMax (p<0.05)

UltraGRO: Human platelet lysate from Helios pharmaceutical. PLTMax: Human platelet lysate from Mill Creek pharmaceutical.

doi:10.1371/journal.pone.0171008.t001
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cytokine which can inhibit cell proliferation in a dose-dependent manner. [32] We found that

HPLs contained higher concentrations of TGF-β than HPS, which may explain the higher

inhibitory effect found in 10% HPLs than in 10% HPS. Some reports have shown satisfactory

cornea epitheliotropic effects of 50% and 100% HPS in treating dry eye diseases. [33–35] Our

study revealed that lower concentrations of HPS (3% and 5%) had better epitheliotropic abili-

ties than a higher concentration (10%) in vitro. Further in vivo studies may be required to con-

firm this finding.

We also performed inverted microscopic imaging, SEM, and TEER to identify cellular dif-

ferentiation in 3% HPS and HPLs. Under inverted microscopy and SEM, the cells cultured

without any blood derivative did not differentiate well, while the cells cultured in the three

human blood derivatives (HPS and 2 HPLs) had regular polygonal shapes, compact cell-to-cell

junctions, and prominent upright microvilli homogenously and densely distributed at the cel-

lular surface, showing signs of good differentiation. The TEER result of the cells cultivated

with 3% blood derivatives also showed similar results as SEM. We demonstrated consistent

and reliable results via cellular morphologies detectable by SEM, and functions of intercellular

junctions as measured by TEER, reinforcing that 3% HPLs may be able to replace HPS.

In addition to the in vitro cell culture system, which investigated cellular migration, prolif-

eration, and differentiation separately, we performed an in vivo corneal epithelial wound heal-

ing assay using Sprague-Dawley rats to reflect the physiological healing process. The in vivo
results supported the in vitro results, showing that HPS and HPLs had comparable effects in

promoting corneal epithelial wound healing.

The reason for using blood-derived products (e.g. HPS and HPL) as topical eye drops in

corneal epithelial disorders is mainly due to the existence of abundant growth factors. [36–39].

Growth factors can be released by platelet activation and this can be reproduced in vitro to pre-

pare growth factor-rich fluids like PRP. We compared several important epitheliotropic factors

among HPS and the 2 commercialized HPLs. Our results showed that the 2 HPLs contained

significantly higher concentrations of EGF, TGF-β1, PDGF-AB, PDGF-BB, and HA compared

to HPS. EGF is normally secreted by lacrimal glands and corneal epithelial cells, and is well

Table 2. Comparative chemical analysis of fetal bovine serum (FBS), human peripheral serum (HPS), and 2 commercialized human platelet lysates

(UltraGRO, PLTMax) (n = 3).

FBS HPS UltraGRO PLTMax

Glucose(mg/dI) 101.7±30.0 82.3±13.1§ 129.0±33.1 200.0±3.6§

Chloride(mEq/1) 99.3±0.6 104.3±1.2*§ 115.7±2.5*† 83.3±0.6§†

Sodium(mEq/1) 136.3±1.2 141.7±2.5*§ 155.3±3.21* 160.0±1.0§

Potassium(mEq/l) >10.0 4.3±0.2*§ 5.0±0.1* 4.8±0.1§

Calcium(mg/dI) 14.0±0.1 9.0±0.3* 43.1±5.3*† 7.8±0.3†

Phosphate(mg/dI) 10.5±1.0 3.4±0.3 4.7±0.21 4.6±0.1

Magnesium(mg/dI) 3.4±0.1 1.9±0.3 2.2±0.1 2.0±0.0

Iron(ug/dI) 207.3±40.5 122.7±18.2 69.7±10.2 73.7±4.9

Ferritin(ng/ml) 0.8±0.2 70.2±24.4§ 37.2±6.5 25.3±2.6§

Vitamin B12(pg/ml) 205.7±14.3 523.0±125.4 505.7±53.0 437.0±83.6

Folate(ng/ml) 8.5±6.5 5.8±1.6 3.9±2.3 7.5±1.9

*Significant difference between HPS and UltraGRO (p<0.05)
§ Significant difference between HPS and PLTMax (p<0.05)
†Significant difference between UltraGRO and PLTMax (p<0.05)

TIBC: total iron-binding capacity; UIBC: unsaturated iron-binding capacity

UltraGRO: human platelet lysate from Helios pharmaceutical. PLTMax: human platelet lysate from Mill Creek pharmaceutical

doi:10.1371/journal.pone.0171008.t002
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known to exert potent proliferative effects on the corneal epithelium [40, 41]. TGF-β1 can

inhibit corneal epithelial cell proliferation but has been suggested to play an important role in

cellular differentiation and migration [29, 42]. TGF-β1 also stimulates corneal epithelial cell

migration via the activation of integrin-β1.[43, 44] Fibronectin is a glycoprotein that supports

cell adhesion and is an important mediator for cellular migration. With the presence of fibro-

nectin, PDGF isoforms can stimulate migration of rabbit corneal epithelial cells. [45] All the

factors mentioned above are important for corneal wound healing. In this study, various con-

centrations of these epitheliotropic components were measured in the HPS and the 2 HPLs.

We did not evaluate the concentrations in FBS due to the incomparability secondary to species

differences. However, wound healing is a complex process and it can be difficult to tell which

single epitheliotropic factor might predominantly control wound healing [29].

Topical application of HPS is commonly used in patients with poor epithelial healing. How-

ever, autologous HPS has laborious processing time and other drawbacks that limit its clinical

use. [29]. Furthermore, the presence of autoantibodies in several ocular autoimmune diseases,

such as systemic lupus erythematosus, Sjogren’s syndrome, and graft-versus-host disease, can

decrease efficacy in treating ocular surface diseases. [46] In 2011, Shen EP et al. reported that

human cord blood serum was superior to HPS in promoting corneal epithelial proliferation

and differentiation. [29] However, the difficulty in obtaining human cord blood serum limits

its applicability.

Platelets are specialized cells with biologically active substances such as various growth fac-

tors that are released from intracellular alpha granules when activated. They play an important

role in the process of wound healing. [47, 48] The most well-known platelet-derived growth

factors include PDGF, TGF-α, TGF-β, FGF, and vascular endothelial growth factors (VEGF).

Although some of these growth factors are available in purified forms, wound healing is a com-

plex process and cannot be mediated by a single agent. Growth factors obtained from platelets

may play a role in regulating epithelial healing. [48, 49]. Recently, HPL has been proposed as

an alternative for the treatment of various diseases and as a replacement for FBS during ex vivo
stem cell expansion.[50] Human blood products are devoid of immunogenic risks due to their

human origin. Secondly, the infrastructure for blood collection, as well as the quality and safety

tests, are well-established in most developed countries. In countries like the United States, Ger-

many, Switzerland, France, blood products are regulated as pharmaceutical/medicinal prod-

ucts and manufactured under the principle of GMP, which contributes to optimized product

consistency, viral safety, and traceability. Since the World Health Organization (WHO) guide-

lines encourage the GMP implementation in blood establishments at a global level, this should

increase the availability of qualified sources [50, 51].

Although autologous HPLs have been commonly reported in the treatment of corneal epi-

thelial disorders, the use of commercialized HPLs can provide additional benefits. Firstly, a

large amount of supply can be provided to many patients. Growth factors obtained from plate-

lets may play a role in regulating epithelial healing. Secondly, conventional human peripheral

serum needs to undergo 2 hours of precipitation for clotting, centrifugation for 15 minutes,

and subsequent dilution of serum to 20 percent with BSS. The whole process may take hours.

Commercialized HPL-derived eye drops can be prepared in advance and do not require blood

draws or processing of the serum, thus shortening the patient waiting time. Finally, patients

with Stevens-Johnson syndrome, bullous pemphigoid or severe graft-versus-host-disease often

need long term use of human peripheral serum eye drops and can suffer from repeated blood

draws for human peripheral serum. Commercialized HPLs will not require blood draws in

these patients.

To our knowledge, this is the first study to systematically compare corneal epitheliotropic

effects of commercialized HPLs with that of HPS. There are some limitations in our study.

The corneal epitheliotrophic capacity of human platelet lysate
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Firstly, the in vitro culture system itself is still a different environment compared to the in vivo
system. The complex physiological and molecular interactions of the tear film and ocular sur-

face in vivo cannot be completely replicated by cell culture models. Besides, the human corneal

epithelial cell line used in this study may be tumorgenic and different from normal corneal epi-

thelium since it was immortalized with SV-40 virus transformation. Further in vitro experi-

ments using primary cultivated corneal epithelial cells or in vivo experiments are needed to

support the current study. [52] Secondly, the concentrations and frequencies of autologous

serum eye drops application may affect outcomes and these were different for in vitro models,

which had continuous exposure to serum. Finally, we used denuded rat cornea as an in vivo
model. However, the wound healing process of healthy rat corneas can be different from the

diseased human corneas.

In conclusion, we found that commercialized HPLs can promote corneal epithelial wound

healing in both in vivo and in vitro experimental systems. Commercialized HPLs may have the

potential to replace HPS eye drops in the treatment of various ocular surface disorders.
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